The effective range theory

The effective, range theory. Objective: To obtain the energy dependence of low
energy scattering by introduction of another parameter called as effective Kange. Since we are dealing with low energy hence the equations can be whitten as; Set 1 - With potential V(h)

$$
u(n) + \{k^{2} - U(n)\}u(n) = 0 \rightarrow \text{Low energy } 0
$$
\n
$$
u_{0}^{\prime}(n) - U(n)u(n) = 0 \rightarrow \text{Limiting case of 0}
$$
\n
$$
u_{0}^{\prime}(n) - U(n)u(n) = 0 \rightarrow \text{Limiting case of 0}
$$
\n
$$
3e^{2}u + \text{Uniforming.}
$$
\n
$$
3e^{2}u + \text{Uniforming.}
$$
\n
$$
3e^{2}u + \text{Uniforming.}
$$
\n
$$
3e^{2}u + \text{Norming.}
$$

Hullifying equi (D by U₀ and equi (D by U₁)
and subtracting the latter from the former

$$
u''u_0 + uu_0 (k^2 - U) = 0
$$

 $u''_0 u - U u u_0 = 0$
 $\frac{d}{dv}(u_0'u - u'u_0) = k^2 u u_0$

Similarly we can write
 $\frac{d}{dv}(v_0'v - v'v_0) = k^2 v v v_0$

Now subtracting (0 from G) and we gel-

$$
\frac{d}{dx}(u_0'u - u'u_0 - v_0'v + v'v_0) = \kappa'(uu_0 - vv_0)
$$
\n
$$
\frac{d}{dx}(u_0'u - u'u_0 - v_0'v + w'v_0) = \kappa'(uu_0 - vv_0)
$$
\nwe get
\nwe get
\n
$$
(u_0'u - u'u_0 - v_0'v + v'v_0)' - \kappa''(uu_0 - vv_0)dx
$$
\n
$$
(u_0'u - u'u_0 - v_0'v + v'v_0)' - \kappa'''(uu_0 - vv_0)dx
$$
\n
$$
\frac{d}{dx}(uu_0 - vv_0)dx
$$
\n
$$
\frac{d}{dx
$$

Using equ' (d)
\n
$$
v_p''(x) = 0
$$

\n $v_p''(x) = 0$ (n - a)
\n
$$
v_p(x) = 0 (n - a)
$$
\n
$$
1 = -\beta a \implies \beta = -\frac{1}{a}
$$
\nSo $v_p(x) = -\frac{1}{a}(n - a) = 1 - \frac{n}{a}$
\n
$$
v_p'(x) = -\frac{1}{a}
$$

\n
$$
v_p'(0) = -\frac{1}{a}
$$

Out-side potential hyqion

\n
$$
u(x) = V(x) = \frac{A \sin(k\pi + \delta)}{k}
$$
\n
$$
at \quad h = 0 \quad V(x = 0) = V(0) = 1
$$
\n
$$
A = \frac{K}{\sin \delta}
$$
\n
$$
V(x) = \frac{\sin(kx + \delta)}{\sin \delta}
$$
\n
$$
V'(x) = \frac{k \cos(kx + \delta)}{\sin \delta}
$$
\n
$$
V'(0) = K \cot \delta
$$

$$
\Rightarrow -\frac{1}{a} - k \cot \delta_{0} = k^{2} \int_{0}^{2} (uu_{0} - uv_{0}) du
$$

Since
Qbside potential region
 $u(x) = v'(k) = u_{0}(x) = v_{0}(x)$
inside potential region, for low energy
 $u(k) = u_{0}(x)$ and $v'(k) = v_{0}(k)$
for $E \ll v(k)$ now differing the effective range v_{0}
 $v_{0} = 2 \int_{0}^{2} (v_{0}^{2} - u_{0}^{2}) du$

Although the integration
\n
$$
h_0 = 2 \int_0^{\infty} (b_0^2 - u_0^3) dx
$$
\n
$$
x + \int_0^{\infty} (b_0^2 - u_0^3) dx
$$
\n
$$
x + \int_0^{\infty} f(x) dx
$$
\n
$$
= f(x) dx + \int_0^{\infty} f(x) dx + \int_0^{\infty} f(x) dx
$$
\n
$$
= \frac{1}{a} - k \int_0^{\infty} (b_0^2 - u_0^2) du = \frac{1}{2} h_0 k^2
$$
\n
$$
\Rightarrow \boxed{a + b = \frac{1}{k} (\frac{1}{2} h_0 k^2 - \frac{1}{a})}
$$

Since We know that- $G_{\text{folal}}(E) = \frac{4\pi}{k^2} \sin^2 \delta$ $=\frac{4\pi}{k^2\cos\theta}$ $G_{\text{total}}(E) = \frac{4\pi}{k^2 + (\frac{1}{2}\Lambda_0k^2 - \frac{1}{a})^2}$ a -> Funi scattering length. The parameters a and the do not depend on the form and shape of the potential well. .. The effective range theory is also known as
He the pendependent theory.

Reference Book

➢Nuclear Physics by Devnathan