The effective range theory

The effective, range theory.

Objective:

To obtain the energy dependence of low energy scattering by introduction of another parameter called as effective hange.

Since we are dealing with low energy so it is safe to assume l = 0,

Set 1 - With potential V(r)

hence the equations can be written as;

 $U(n) + \{k^2 - U(n)\} U(n) = 0 \rightarrow \text{Low energy } 0$ $U'(n) + \{k^2 - U(n)\} U(n) = 0 \rightarrow \text{Limiting case of } 0$ 3eno - lenergy 4eno - lenergy

Multiplying equ' (1) by uo and equ' (2) by u and subtracting the latter from the former $u'' u_0 + u u_0 (K^2 - U) = 0 \} \Rightarrow u''_0 u - u''_u_0 = \kappa u u_0$ $u''_0 u_0 - U u u_0 = 0$ $\frac{d}{dx} (u_0' u_0 - u' u_0) = \kappa^2 u u_0$ Similarly we can write $\frac{d}{dx} (v_0' v_0 - v' v_0) = \kappa^2 v v_0$ Now subtracting (6) from (6) and we get

de $(u_0'u - u'u_0 - v_0'v + v'v_0) = \kappa^2(uu_0 - vv_0)$ Integrating equi (i) with limits N = 0 to $N = \infty$ We get $u_0'u - u'u_0 - v_0'v + v'v_0$ = $\kappa^2 \int_0^\infty (uu_0 - vv_0) d\Lambda$ Using following assumption

Ofor outside the potential region $u(\Lambda) = v(\Lambda)$ and $u_0(\Lambda) = v_0(\Lambda)$ (i) $u(\Lambda) = v_0(\Lambda) = 0$ at $\Lambda = 0 \Rightarrow u(0) = u_0(0) = 0$ $v(\Lambda) = v_0(\Lambda) = 1$ at $\Lambda = 0 \Rightarrow v(0) = v_0(0) = 1$

Using equi Q
$$V_0''(x) = 0$$

$$V_0(x) = D(x-a)$$

$$V_0(x) = D(x-a)$$
Aince $V_0(0) = 1$ at $x = 0$

$$1 = -Da \implies D = -\frac{1}{a}$$

$$So \ V_0(x) = -\frac{1}{a}(x-a) = 1 - \frac{r_0}{a}$$

$$V_0'(x) = -\frac{1}{a}$$

$$V_0'(0) = -\frac{1}{a}$$

Outside potential hygion
$$U(\lambda) = V(\lambda) = A \frac{\sin(k\pi + \delta)}{K}$$
at $\lambda = 0$ $V(x=0) = V(0) = 1$

$$A = \frac{K}{\sin \delta}$$

$$V(\lambda) = \frac{\sin(kx + \delta)}{\sin \delta}$$

$$V'(\lambda) = \frac{K \cos(kx + \delta)}{\sin \delta}$$

$$V'(0) = K \cot \delta$$

Since

Outside potential region

$$u(\Lambda) = V(\Lambda) + u_0(\Lambda) = v_0(\Lambda)$$

Inside potential region, for low energy

 $u(\Lambda) = u_0(\Lambda) + u_0(\Lambda) = v_0(\Lambda)$

for $E \ll V(\Lambda)$, now diffining the effective range λ_0
 $v_0 = 2 \int_0^\infty (v_0^2 - u_0^2) du$

Allthough the integration $80 = 2 \int (v_0^2 - u_0^2) dx$ extends to ∞ , but no gets contribution effectively only from the potential region only. $-\frac{1}{a} - k \cot \delta = k^2 \int (v_0^2 - u_0^2) dx = \frac{1}{2} r_0 k^2$ $\Rightarrow \int \cot \delta = \frac{1}{k} \left(\frac{1}{2} r_0 k^2 - \frac{1}{a} \right)$

Since We know that $\int_{\text{total}} (E) = \frac{4\pi}{K^2} \sin^2 \delta \\
= \frac{4\pi}{K^2 \cos^2 \delta}$ $= \frac{4\pi}{K^2 \cos^2 \delta}$ The parameters a and to do not depend on the form and shape of the potential well.

The effective hange theory is also known as the shape independent theory.

Reference Book

➤ Nuclear Physics by Devnathan